Complete the square of 2x^2+16x-24 and hence state the minimum value of the function

2[(x^2+8x-12) [Explain basic complete the square technique]2[(x+4)^2 -16 -12]2[(x+4)^2-28]2(x+4)^2-56The term (x+4)^2 is always greater or equal to 0. So the smallest value it can have is 0. So the minimum value of the function will be -56. (Draw a sketch of the curve )

JS
Answered by Jake S. Maths tutor

3426 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How could I sketch a graph of y=2x^3-3x^2?


Integrate 3x*2 using limits of 3 and 2


Integrate (3x^2-x^3)dx


What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences