Complete the square of 2x^2+16x-24 and hence state the minimum value of the function

2[(x^2+8x-12) [Explain basic complete the square technique]2[(x+4)^2 -16 -12]2[(x+4)^2-28]2(x+4)^2-56The term (x+4)^2 is always greater or equal to 0. So the smallest value it can have is 0. So the minimum value of the function will be -56. (Draw a sketch of the curve )

JS
Answered by Jake S. Maths tutor

3732 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x


How do you 'rationalise the denominator'?


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


What is dy/dx when y=ln(6x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning