dx/dt = -5x/2, t>=0. Given that x=60 when t=0, solve the differential equation, giving x in terms of t.

dx/dt = -5x/2 to solve this we must firstly separate the variables ∫2/x dx = -∫5 dt then we solve the integrals using basic integration formulae 2lnx = -5t+c. When it comes to the exam, many students forget the +c and lose an easy mark so always remember to add this when integrating. We know x=60 when t=0, so we can substitutes these in to solve for c and complete the equation 2ln60 = -5(0)+c > c = 2ln60 it is often easier to leave c in log form since it can sometimes make later calculations easier. We can now sub our c into the original equation we solved and simplify to find 2lnx = -5t + 2ln60 > lnx = -5t/2 + ln60 > lnx - ln60 = -5t/2 > ln(x/60) = -5t/2 (Using basic log rules) > x/60 = e^(-5t/2) since the question asks us to find x in terms of t, we can find x = 60e^(-5t/2).

KS
Answered by Kulveer S. Maths tutor

5454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


How would I differentiate a function such as f(x)=x^3(e^(2x))?


Does the equation: x^2+5x-6 have two real roots? If so what are they?


What is 'Chain Rule' and why is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences