Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)

RHS: cosh(x)cosh(y) + sinh(x)sinh(y) = 1/4(e^x + e^-x)(e^y + e^-y) + 1/4(e^x - e^-x)(e^y - e^-y) = 1/4(e^x.e^y + e^x.e^-y + e^-x.e^y + e^-x.e^-y + e^x.e^y - e^x.e^-y - e^-x.e^y + e^-x.e^-y) = 1/4(2e^x.e^y + 2e^-x.e^-y) = 1/2(e^x.e^y + e^-x.e^-y) = 1/2(e^(x+y) + e^-(x+y)) = cosh(x+y) [QED]

AH
Answered by Alex H. Maths tutor

6361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


find the derivative of f(x) = x^3 + 2x^2 - 5x - 6. Find all stationary points of the function.


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


What does differentiation actually do?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning