Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)

RHS: cosh(x)cosh(y) + sinh(x)sinh(y) = 1/4(e^x + e^-x)(e^y + e^-y) + 1/4(e^x - e^-x)(e^y - e^-y) = 1/4(e^x.e^y + e^x.e^-y + e^-x.e^y + e^-x.e^-y + e^x.e^y - e^x.e^-y - e^-x.e^y + e^-x.e^-y) = 1/4(2e^x.e^y + 2e^-x.e^-y) = 1/2(e^x.e^y + e^-x.e^-y) = 1/2(e^(x+y) + e^-(x+y)) = cosh(x+y) [QED]

AH
Answered by Alex H. Maths tutor

5851 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


Where does integration by parts come from?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning