Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)

RHS: cosh(x)cosh(y) + sinh(x)sinh(y) = 1/4(e^x + e^-x)(e^y + e^-y) + 1/4(e^x - e^-x)(e^y - e^-y) = 1/4(e^x.e^y + e^x.e^-y + e^-x.e^y + e^-x.e^-y + e^x.e^y - e^x.e^-y - e^-x.e^y + e^-x.e^-y) = 1/4(2e^x.e^y + 2e^-x.e^-y) = 1/2(e^x.e^y + e^-x.e^-y) = 1/2(e^(x+y) + e^-(x+y)) = cosh(x+y) [QED]

AH
Answered by Alex H. Maths tutor

6165 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of 2^x not x*2^(x-1)?


If cos(x)= 1/3 and x is acute, then find tan(x).


Find ∫(8x^3 + 4) dx


Integrate dy/dx = 2x/(x^2-4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning