Solve the simultaneous equations : x^2 + y^2 = 13 and x = y - 5 .

Below is the solution to the aforementioned question. In order to solve a simultaneous equation, one has to write one of the unkown variables in terms of the other. In this case, x was already written in relation to y, which means we can replace x in the first equation with y - 5. This allows us to have an equation with only one unkown variable, y. We solve this equation and we end up with two possible solutions for y. We find out x in both those solutions and we have our answers. Below is the mathematical solution as well. x2+ y2 = 13 x = y - 5 (y - 5)2 + y2 = 13 (y - 5)(y - 5) + y2 = 13 y2-5y - 5y + 25 + y2 = 13 2y2-10y + 25 = 13 2y2-10y + 12 = 0 y2-5y + 6 = 0 (y - 3)(y - 2) = 0 y1= 3 and y2 = 2 x1 = (3) - 5 and x2 = (2) - 5 x1 = -2 and x2 = -3

SG
Answered by Sebastian G. Maths tutor

15201 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ball, dropped vertically, falls d metres in t seconds. d is proportional to the square of t. The ball drops 45 metres in the first 3 seconds. How far does the ball drop in the next 7 seconds?


If a line is in the form y=mx+c why does m give you the gradient of the line


How do you subtract a mixed fraction from another?


Azmol, Ryan and Kim each played a game. Azmol’s score was four times Ryan’s score. Kim’s score was half of Azmol’s score. Write down the ratio of Azmol’s score to Ryan’s score to Kim’s score.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences