Solve the simultaneous equations : x^2 + y^2 = 13 and x = y - 5 .

Below is the solution to the aforementioned question. In order to solve a simultaneous equation, one has to write one of the unkown variables in terms of the other. In this case, x was already written in relation to y, which means we can replace x in the first equation with y - 5. This allows us to have an equation with only one unkown variable, y. We solve this equation and we end up with two possible solutions for y. We find out x in both those solutions and we have our answers. Below is the mathematical solution as well. x2+ y2 = 13 x = y - 5 (y - 5)2 + y2 = 13 (y - 5)(y - 5) + y2 = 13 y2-5y - 5y + 25 + y2 = 13 2y2-10y + 25 = 13 2y2-10y + 12 = 0 y2-5y + 6 = 0 (y - 3)(y - 2) = 0 y1= 3 and y2 = 2 x1 = (3) - 5 and x2 = (2) - 5 x1 = -2 and x2 = -3

SG
Answered by Sebastian G. Maths tutor

15547 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve; (6x - 2)/2 - (4x+7)/3 = 1-x


HIGHER TIER a) Factorise the following equation into two bracket form: 2x^2-5x-12. b)2x^2-5x-12=0. Solve this equation to find the values of x, using your answer to part a). BONUS c) Sketch the function y=2x^2-5x-12, showing any x intercepts


There are 892 litres of oil in Mr Aston’s oil tank. He uses 18.7 litres of oil each day. Estimate the number of days it will take him to use all the oil in the tank.


Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences