Simplify fully: (24 - √ 300)/(4√ 3 - 5). Give your answer in the form a√ b where a and b are integers and find the values of a and b.

rationalise the denominator (remove the surds) by multiplying by a fraction = 1, known as the rationalising factor = (24 - √ 300)/(4√ 3 - 5) * (4√ 3 + 5)/(4√ 3 + 5) = (24 - √ 300)(4√ 3 + 5)/(48 - 25) = (24 - √ 300)(4√ 3 + 5)/23 expand the brackets of the numerator and group like terms = (24 - 10√ 3)(4√ 3 + 5)/23 = (24 * 4√ 3 - 4√ 3 * 10√ 3 + 24 * 5 - 5 * 10√ 3)/23 = (96√ 3 - 120 + 120 - 50√ 3)/23 eliminate like terms = ((96 - 50)√ 3 + (120 - 120))/23 = (46√ 3 + 0)/23 = (46√ 3)/23 divide by common factor = 2√ 3 a = 2 b = 3

AL
Answered by Aloysius L. Maths tutor

5972 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If p = (3a + 5)/(4 - a), make a the subject of the formula


How would I make S the subject of the formula in the equation V^2 = U^2 + 2AS


A bag with 750 balls is comprised of 300 red, 200 blue and 250 green. What is the probability of three green balls being in succession, providing the ball is put back between each turn.


Solve simultaneous equations x + y = 3 and -3x + 5y = 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences