The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.

Since we differentiate a function to find the gradient of a curve at any point, we need to reverse that to find the equation of the curve. We do this by integrating with respect to x:If you have a constant (a number without x), it becomes (constant)x. In this case, 3 becomes 3xThen, if you do have an x, you add one to the power and divide by the new power. So, here, -x^2 will become (-x^3)/3If you're given a point and told to find the equation of the curve, you have to find the constant, c. This is because when you a constant, it becomes zero. To do this, you substitute the coordinates into your integrated form: y = 3x - (x^3)/3 + c. This leads to 1 = 3(6) - (6^3)/3 + c. Solve for c and you'll get 55.So the equation of the curve is y = 3x - (x^3)/3 + 55.Never forget +c!!

DN
Answered by Darya N. Maths tutor

10289 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of x(x+3)^5


How can I differentiate x^2+2y=y^2+4 with respect to x?


Find d/dx (ln(2x^3+x+8))


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning