The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.

To find dy/dx, the differential, of any function... you must times the coefficient of each variable of x by its power, then reduce the power by one. Using this information we can work out that 3x^4 turns to 12x^3, and -8x^3 turns to -24x^2. Since -3 doesn't appear to be a coefficient of x, we must imagine it to be -3x^0. Therefore when you multiple the coefficient, 3, by 0, this part of the equation turns to zero.
Therefore if curve C has equation y = 3x^4 – 8x^3 – 3. We know that dy/dx = 12x^3 - 24x^2 (+0).

JC
Answered by Joseph C. Maths tutor

4447 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)


Differentiate y = 7(x)^2 + cos(x)sin(x)


How does finding the gradient of a line and the area under a graph relate to real world problems?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning