The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.

To find dy/dx, the differential, of any function... you must times the coefficient of each variable of x by its power, then reduce the power by one. Using this information we can work out that 3x^4 turns to 12x^3, and -8x^3 turns to -24x^2. Since -3 doesn't appear to be a coefficient of x, we must imagine it to be -3x^0. Therefore when you multiple the coefficient, 3, by 0, this part of the equation turns to zero.
Therefore if curve C has equation y = 3x^4 – 8x^3 – 3. We know that dy/dx = 12x^3 - 24x^2 (+0).

JC
Answered by Joseph C. Maths tutor

4699 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The arithmetic series is given by (k+1)+(2k+3)+(3k+5)+...+303. a)Find the number of term in the series in terms of k. b) Show that the sum of the series is given by (152k+46208)/(k+2). c)Given that S=2568, find k.


Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.


Find dy/dx if y= sinx/2x+1


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning