Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.

First separate the variables so that the left side of the equation is an expression only in terms of y and the right side only in terms of x.exp(y)dy=sin2x dxSecondly both sides have to be integrated to obtain an expression for exp(y) in terms of x.exp(y)=-(1/2)cos2x+cFinally take the natural log to find an expression for y in terms of x, the general solution.y=ln(-(1/2)cos2x+c)To work out the constant c substitute the x and y coordinates of a known point into the general solution. In this case the origin(x=0,y=0).0=ln(-(1/2)+c) Therefore c=3/2 and the particular solution to the differential equation is y=ln(-(1/2)cos2x+3/2)y=ln((3-cos2x)/2)

FB
Answered by Felix B. Maths tutor

3119 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Intergrate 15x^2 + 7


By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences