Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.

Student uses the definition of area [A = 1/2 integral r(theta)^2 d theta], and proceeds using standard integration techniques to give a quadratic solvable for alpha. [alpha^2 = 25] Thus, alpha = 5.

GC
Answered by Graham C. Maths tutor

3294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


Solve the inequality |4x-3|<|2x+1|.


find the coordinates of the turning points of the curve y = 2x^4-4x^3+3, and determine the nature of these points


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences