Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.

Student uses the definition of area [A = 1/2 integral r(theta)^2 d theta], and proceeds using standard integration techniques to give a quadratic solvable for alpha. [alpha^2 = 25] Thus, alpha = 5.

GC
Answered by Graham C. Maths tutor

3321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation (1 + x^2)dy/dx = x tan(y)


Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P


Find the exact value of sin(75°). Give your answer in its simplest form.


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences