Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.

Student uses the definition of area [A = 1/2 integral r(theta)^2 d theta], and proceeds using standard integration techniques to give a quadratic solvable for alpha. [alpha^2 = 25] Thus, alpha = 5.

GC
Answered by Graham C. Maths tutor

3607 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


AS Maths ->Expresss x^2 + 3x + 2 in the form (x+p)^2 + q... where p and q are rational number


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning