Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.

Student uses the definition of area [A = 1/2 integral r(theta)^2 d theta], and proceeds using standard integration techniques to give a quadratic solvable for alpha. [alpha^2 = 25] Thus, alpha = 5.

GC
Answered by Graham C. Maths tutor

3221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


Differentiate the equation y = x^2 + 3x + 1 with respect to x.


A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences