Differentiate x^2 ln(3x) with respect to x

This question requires the use of differentiation by product rule. First differentiate the first term, whilst keeping the second term the same, i.e. we get 2xln(3x). Secondly we keep the first term the same, and differentiate the second term, meaning it becomes x2(1/x), and thus our overall answer would be adding both of the things we got up (as that's the product rule). Thus the answer would be 2xln(3x) + x.

RF
Answered by Ricky F. Maths tutor

12332 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

what is implicit differentiation and how is it achieved?


Given that y = 5x^4 + 3x^3 + 2x + 5, find dy/dx


Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences