Find the stationary points of y = (x-7)(x-3)^2.

This problem requires the use of the product rule.Let u= x-7 ; by differentiation du/dx = 1. Let v = (x-3)^2 ; by differentiation using the chain rule, dv/dx = 2(x-3)
Product Rule: dy/dx = u*(dv/dx) + v*(du/dx)so dy/dx = (x-7)(2(x-3)) + (x-3)^2 = (2(x-7))*(x-3) + (x-3)^2= (x-3) (2(x-7)+(x-3))= (x-3) (3x-17)To find stationary points; dy/dx = 0. So x = 3 or 17/3
Substituting the x values into the original equations lets us find the co-ords of the stationary points ; which are :(3,0) & (5.67, -9.48) to 3 sf

SF
Answered by Sam F. Maths tutor

3463 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve sin(2x)=0.5. between 0<x<2pi


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


integrate 1/(x^2+4x+13)


Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences