Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.

Thinking about the normal, it is a line which cuts the curve at right angles, and so will have the form y = mx + c. Now at the point where x = 1, we know the y value from the curve's equation is y = 2(1)2 -3(1) + 7 = 2 -3 + 7 = 6, so both the curve and this line pass through the point (1,6). The normal cuts the curve at right-angles and so its gradient depends of the gradient of the curve. We can find the curve's gradient by differentiating the curve's function in the standard way using the nxn-1 rule to give dy/dx = 4x -3. So the gradient of the curve at x = 1 is 4(1) - 3 = 1. Now, we must be careful as the question asked for the equation of the normal, whereas the gradient of the curve is the gradient of the tangent. However, as they meet at 90o , we can use the fact that the gradient of the normal = -1/ gradient of the tangent, so here we have -1/ 1 = -1. Bringing it all together and again thinking about y = mx +c, we know that for where x = 1, y = 6 and m = -1, so we are just missing c! We can rearrange for c = y -mx = 6 - (-1)(1) = 7, so the final equation is y = -x + 7.
For most questions asking to find equations of tangents and normals, this same method can be applied; think of the equation of the line's form (y = mx+c), use the curve's equation to find the coordinates of where the line sits on the curve (y,x), find the gradient of the curve at this point by differentiating its equation (m) and use gradient of normal = 1 / gradient of tangent if the question asks for the normal, finally substitute back into y= mx +c to find c. Remember to leave the answer in a sensible form, which may be specified in the question!

MJ
Answered by Matthew J. Maths tutor

8026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Integrate (1 - x^2)^(-0.5)dx within the limits 0 and 1


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences