(a) Use integration by parts to find ∫ x sin(3x) dx

The question asks for integration by parts. Therefore we need to differentiate one variable and integrate the other. First we need to decide which variable is going to be which. Algebra should always be differentiated instead of trigonometric functions if possible. Therefore take:u=x, dv/dx = sin(3x). Differentiate the first term and integrate the second term to give: du/dx =1, and v = -1/3 cos(3x) . Now apply the formulae: uv - ∫ (du/dx * v) dx . This will give us: -x/3 cos(3x) - - 1/3( ∫ cos(3x) dx ) . The answer will then be: -x/3 cos(3x) + 1/9 sin(3x) + c

GA
Answered by George A. Maths tutor

7579 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


Can you differentiate y = (x^4 + x)^10


Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences