Sketch the function (x^4 + 2x^3 - x -2)/(x+2)

First of all determine the range of the function by looking at its denominator. The function is defined at each point except x=-2 Now to find the zeros of the function first factorise it and equate it to zero y=[( x3-1)(x+2)]/(x+2)=0 and notice how we can get rid of the denominator. Thus the only zero is at x=1. Now we realised that for every x different from -2 the function behaves exactly like (x3-1) which we sketch like a positive cubic shifted of 1 unit downwards. Leaving -2 hollow we conclude the sketch.

MD
Answered by Matteo D. Maths tutor

3108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate?


Express (x+1)/2x + (2x+3)/(x+1) as one term


Find the area enclosed by the curve y = 3x - x^2 and the x-axis


Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning