How can you integrate the function (5x - 1)/(x^(3)-x)?

The first thing to do, is see if it can be simplified: 5x -1 can't, however x^(3) - x simplifies to x(x^2 - 1) and then to x(x-1)(x+1) by the difference of two squares. So now we have (5x - 1)/(x(x-1)(x+1)) which can be split apart into partial fractions. To do this we set (5x - 1)/(x(x-1)(x+1)) = A/x + B/(x-1) + C/(x+1). Multiplying out the denominator on the right gives the equation 5x - 1 = Ax^2 - A + Bx^2 + Bx + Cx^2 - Cx. By comparing coefficients, we can decide that A+B+C=0, B-C=5 and A=-1. A=-1 is given so B+C=-1 adding this to the second equation gives 2B=4 so B=2 and then C=-3.Thus, we now have -1/x + 2/(x-1) -3/(x+1). The integral of this is -ln|x| + 2ln|x-1| - 3ln|x+1|, or ln|(x-1)^2/x(x+1)^3|.

AW
Answered by Adam W. Maths tutor

3314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate [xe^(-x)] with respect to x.


How can we determine stationary points by completing the square?


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


How do you integrate the natural logarithm?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning