Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.

We use the product rule with u=x and v=ln(x) (so u'=1 andv'=1/x) to differentiate xln(x) to ln(x)+1, and -x just differentiates to -1, hence we have. f'(x)=ln(x).
Now note that ln(x^3)=3ln(x) using properties of logarithms.Hence, we are just integrating 3ln(x). We know, from the first part, that ln(x) will integrate to xln(x)-x, and we require 3 lots of this, so 3ln(x) integrates to 3xln(x)-3x. Plugging in 1 and e into this formula, we get that the integral of ln(x^3) between 1 and e is (3eln(e)-3e)-(3ln(1)-3) = (3e-3e)-(30-3) = -3 (since ln(e)=1 and ln(1)=0).

MJ
Answered by Matthew J. Maths tutor

2867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Fnd ∫x^2e^x


How to differentiate a bracket raised to a power i.e. chain rule


What is the difference between a definite integral and an indefinite integral?


Why does 'x' need to be in radians to differentiate 'sin x'?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences