How to translate a function of form y = f(x)

In a translation the graph of the function is moved in either the x or y direction. To perform a translation by amount a in the positive x direction (to the right on a graph) we replace every x in the equation with (x-a), so the function y = f(x) becomes y = f(x-a). A translation of a in the negative x direction can be thought of as a translation of -a in the positive direction, so this time y = f(x) becomes y = f(x-(-a)) = f(x+a). For translations in the y direction a similar rule applies but this time we substitute y. A translation of in the positive y direction (upwards) will change y = f(x) into (y-b) = f(x), which is often written as y = f(x) + b. Similarly a translation by b in the negative y direction would give (y+b) = f(x) which may be written y = f(x) - b. Example: Translate the function y = x^2 + 3x + 5 by vector (4,-1). Solution: The vector given means that we want to translate the function by 4 units in the positive x direction and 1 units in the negative y direction. This transforms the original equation into (y+1) = (x-4)^2 + 3(x-4) + 5 which expands to y +1 = x^2 - 8x + 16 + 3x - 12 + 5 and simplifies to y = x^2 - 5x + 8 

LM
Answered by Laura M. Maths tutor

27938 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 4x^2 + a/ x + 5 has a stationary point. Find the value of the positive constant a given that y-ordinate of the stationary point is 32.


The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


Where does the quadratic formulae come from?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning