Simplify the fraction 54x^(6)y^(13)/6x^(3)y^(9).

We can treat the numbers (coefficients) 54/6 as one separate fraction to be multiplied by what we get when we've simplified the x's and y's. So first we do 54/6 to get 9, which we'll multiply the rest of the answer by.Next, recall that when dividing powers with the same base, we take away the index in the denominator from the index in the numerator. So, thinking of x^(6)y^(13)/x^(3)y^(9) as x^(6)/x^(3) multiplied by y^(13)/y^(9), we get x^(3) multiplied by y^(4).Then we put the coefficient from before back on to get 9x^(3)y^(4).

LK
Answered by Leo K. Maths tutor

3106 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


Solve the simultaneous equations 5x + y = 21, x - 3y = 9


You are given a square which you are told has a total area of 100 squared centimetres. You are also told that one side of the square has dimension 4(3x + 2), and the other has dimension 8x - y. What are the values of x and y?


Represent x = 0.0154 recurring as a fraction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences