Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2

Starting by factorising the curve equations: the first one factorises to y = (x-3)(x-2) and the second one becomes y=(2-x)(2+x). From this, a rough sketch of the curves can be drawn and it can be seen that for the area in question, y=4-x2 is always above the other curve. This will become important for the integration step. The next step is to find the points where the two curves intersect (we only care about the x-coordinate here). Equating the two curves gives x2-5x+6=4-x2 which can be rearranged and factorised to get (2x-1)(x-2)=0, so the required coordinates are x = 1/2 and x=2.By looking at the rough sketch, we can see that we want to subtract the area below y=x2-5x+6 from the area below y=4-x2 between x = 0.5 and x=2. To do this, we compute integral from 0.5 to 2 of 4-x2-(x2-5x+6) to get the integral from 0.5 to 2 of -2x2+5x-2, which is [-2x3/3 + 5x2/2 - 2x] from 0.5 to 2. Substituting in 0.5 and 2 gives 9/8 (which is 1.125).

RN
Answered by Ruby N. Maths tutor

3888 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When given an equation in parametric form, how can you figure out dy/dx?


Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .


If x is a real number, what are the solutions to the quadratic: 4*x^2- 4*x+1 = 0


Three forces (4i + 7j)N, (pi +5j)N and (-8i+qj) N act on a particle of mass 5 kg to produce an acceleration of (2i - j) m s 2 . No other forces act on the particle. Find the resultant force acting on the particle in terms of p and q. THEN find p and Q


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning