find the definite integral between limits 1 and 2 of (4x^3+1)/(x^4+x) with respect to x

first notice the integral is in the form f'(x)/f(x), and indefinite integrals of this form are ln|f(x)|+c.
therefore the integral is [ln|x4+x|] between limits 1 and 2.
subbing in limits gives ln|24+2|-ln|14+1|
simplifying gives ln|18|-ln|2|
and by log rules this is equivalent to ln|18/2|=ln|9|.

TD
Answered by Tutor22645 D. Maths tutor

4370 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


find the integral for xe^10x


Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning