How do you integrate by parts?

This is one of the trickiest methods of calculus on the course, but it's important to know, and is very doable if you set up the problem right and remember the steps. 

Integration by parts works when you have to integrate a function of the type f=u(dv/dx). All you have to remember is that, and the formula(dv/dx) dx = uv - ∫ (du/dx) dx

Ok, let's try an example. 

Say you're asked to integrate xsin(x). 

I find it makes it easiest to write out all the things I need for the formula before I plug them in. 

We'll choose x to be u, because differentiating x makes it more simple, while differentiating sin(x) doesn't really help that much. You always choose u to be the part that comes out simplest when differentiated.

So:                                                            u = x

Then, by differentiating,                du/d= 1

and also:                                               dv/dx = sin(x)

Then, integrating to find v,             v = -cos(x). 

Now, all we have to do is plug that back into the formula from earlier:

             ∫ xsin(x) dx = -xcos(x) - ∫ -cos(x) (1) dx.

Which is way easier! Integrating cos(x) gives sin(x) + c (always remember c!), so we end up with

             ∫ xsin(x) dx = -xcos(x) + sin(x) + c.

And that's your answer!

IE
Answered by Isaac E. Maths tutor

5436 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^2cos(x)


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


Find the first three terms in the binomial expansion of (8-9x)^(2/3) in ascending powers of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning