Differentiate x^x

With the methods we know at A Level we cannot current differentiate xx in its current form. Therefore let y = xxTo turn it into a form we can differentiate we take the natural log of both sides. This gives ln(y) = ln(xx). Using the log rule (logab = bloga) we can then say ln(y) = xln(x). We can then differentiate implicitly to form a differential equation 1/y x dy/dx = ln(x) + 1. To find dy/dx we then simply multiply through by y to give...dy/dx = y(lnx + 1) = xx(lnx + 1)

Answered by Maths tutor

3054 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find d/dx (ln(2x^3+x+8))


Differentiate (3x)e^(3x)


Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found


Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning