P is a point on a circle with the equation x^2 + y^2 = 45. P has x-coordinate 3 and is above the x axis. Work out the equation of the tangent to the circle at point P.

First insert x = 3 into the equation of the circle3^2 + y^2 = 459 + y^2 = 45 take 9 away from both sidesy^2 = 36 take the square root of both sidesy = 6 (not -6 as P is above the x-axis)Next find the gradient of the tangent. First find the gradient of the normal. Since the centre of the circle is at (0,0), the gradient (change in y/ change in x) is 6/3 = 2. This means that the gradient of the tangent is -1/2 (the negative reciprocal of the gradient of the normal).Finally, to find the equation of the tangent at P, use the formula y + y' = m(x - x').y + 6 = -1/2(x - 3) expand and simplify to the form y = mx + cy = -1/2x - 9/2 (or to remove fractions 2y + x = -9)

EW
Answered by Emily W. Maths tutor

3146 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

make x the subject of 5(x-3) = y(4-3x)


A cycle race across Hungary is 392,5 miles long. Bob is a contestant in this race, he can go as fast as 13.48 miles per hour and can pedal 6 hours a day. Work out in how many days will Bob complete this race.


What is the domain and what is the range


Ben would like to buy two tickets for the theatre, each ticket costs £25 and there is a 15% booking fee applied to the ticket cost. How much does it cost him to buy the two tickets with the additional fee?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences