P is a point on a circle with the equation x^2 + y^2 = 45. P has x-coordinate 3 and is above the x axis. Work out the equation of the tangent to the circle at point P.

First insert x = 3 into the equation of the circle3^2 + y^2 = 459 + y^2 = 45 take 9 away from both sidesy^2 = 36 take the square root of both sidesy = 6 (not -6 as P is above the x-axis)Next find the gradient of the tangent. First find the gradient of the normal. Since the centre of the circle is at (0,0), the gradient (change in y/ change in x) is 6/3 = 2. This means that the gradient of the tangent is -1/2 (the negative reciprocal of the gradient of the normal).Finally, to find the equation of the tangent at P, use the formula y + y' = m(x - x').y + 6 = -1/2(x - 3) expand and simplify to the form y = mx + cy = -1/2x - 9/2 (or to remove fractions 2y + x = -9)

EW
Answered by Emily W. Maths tutor

3115 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the linear equation 12x - 4 = 3x + 2


Completing the square of 2x^2 - 8x + 7 = 0


(root18 +root2)sqaured/(root8-2). Give answer in form A(B+rootC) where A,B and C are integers


A circle with centre C has equation x^2 + y^2 + 2x - 6y - 40 = 0. Express as (x - a)^2 + (y - b)^2 = d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences