A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.

(In the following answer, y' denotes dy/dx, i.e. the derivative of y with respect to x, where y is a function of x)

y = (x-1)e-3x = uv, where u = x-1 and v = e-3x.
We have that u' = 1 and using the Chain Rule, v' = e-3x * (-3) = -3e-3x.
(For further clarification on acquiring v' if needed, we let z = -3x, then v = ez and z' = -3, since the Chain Rule states that d/dx( g(f(x)) ) = g'(f(x)) * f'(x), we get that v' = (ez)' = ez * z' = ez * (-3) = -3e-3x ).


Using the Product Rule ( y' = (uv)' = u'v + uv') we get,
y' = 1 * e-3x + (x-1)*(-3e-3x), rearranging we then get,
= e-3x - 3e-3x(x-1), factorising e-3x gives,
= e-3x(1 - 3(x - 1)), expanding brackets leads to,
= e-3x(1 - 3x + 3), collecting terms results in,
= e-3x(4 - 3x).


We get a stationary point when y' = 0.
Thus at the x-coordinate of M, m, we have,
y'(m) = e-3m(4 - 3m) = 0, since e-3m > 0 for all real numbers m, we have,
4 - 3m = 0, and so
m = 4/3.

Answered by Maths tutor

3785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


how to integrate by parts


The line AB has equation 5x+3y+3=0. It is parallel to a line with equation y=mx+7. What is m?


In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences