Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2

A needs to be multiplied up by x+3 to make the fraction have the same in denominator as the other expressions. Then you need to equate the numerators. 3 - 5x = A(x+3) + B
You can gain two simultaneous equations from this equation, those with an x multiplier and those without:-5 = A3 = 3A + Binput A:3 = -15 + B
rearrange to find B.
Answer is therefore: 18/(x+3)^2 - 5/(x+3)

Answered by Maths tutor

2749 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


How do you integrate the term x^2?


Integrate y=x^2 between the limits x=3 and x=1


How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences