Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2

A needs to be multiplied up by x+3 to make the fraction have the same in denominator as the other expressions. Then you need to equate the numerators. 3 - 5x = A(x+3) + B
You can gain two simultaneous equations from this equation, those with an x multiplier and those without:-5 = A3 = 3A + Binput A:3 = -15 + B
rearrange to find B.
Answer is therefore: 18/(x+3)^2 - 5/(x+3)

Answered by Maths tutor

2669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


find dy/dx= x^2 +x^3


Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


f(x) = x^x, find f'(3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences