Given x = 3sin(y/2), find dy/dx in terms of x, simplifying your answer.

The first step is to find dx/dy in terms of y, which when differentiating comes out as 3/2cos(y/2), so dy/dx in terms of y is the reciprocal of this.The next step is to eliminate the y dependent terms, which can be done one of two ways. One posssible method is to draw a diagram of a right angled triangle with an angle representing y/2 and using the relationship x = 3sin(y/2) to find cos(y/2) in terms of x using pythagoras and basic trigonometry. The other method that could be used is to utilise the trigonometric identity sin2(y/2) + cos2(y/2) = 1 and using 3sin(y/2) = x to find an expression for cos(y/2) in terms of x.Either method will give the same answer, the relationship cos(y/2) = 1/3(9-x2)1/2. The final step is then to substitute this into dy/dx to eliminate cos(y/2) and the final expression is then dy/dx = 2/(9-x2)1/2.

MA
Answered by Max A. Maths tutor

6044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate y=(4x^3)-5/x^2


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences