Evaluate the indefinite integral when the integrand function is tan(x).

To solve this problem we will use a clever substitution to easily integrate and thus obtain the answer.First we can represent tan(x) as its fractional equivalent sin(x)/cos(x), assigning the variable u to cos(x) then du/dx is -sin(x).Having this in mind, we can rearrange the trigonometric fraction to the equivalent form (-) -sin(x)/cos(x) by simply factorising out a -1.Now its easier to see the substitution: (-)du/u (note the dx from the denominator cancels out with that of the integrand).
Finally complete the integration of -du/u, which is -ln(u) + C where C is a constant. Back-substitute the value of u to have -ln(cos(x)) + C. Note this can be written in the form as ln(cos(x)-1) or ln(sec(x)). So the indefinite integral of tan(x) is ln(sec(x)) + C.

JN
Answered by Jose Nicolas B. Maths tutor

3044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


Below is a question from the Edexcel Maths Core 1 textbook, Solve the equation x^2 + 8x + 10 = 0 using completing the square.


Prove that sqrt(2) is irrational


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning