Take the 2nd derivative of 2e^(2x) with respect to x.

The second derivative is just two derivatives carried out back to back. In this case we just have to differentiate this function once, and then differentiate the result. The derivative of 2e^(2x) can then be found by using the product rule to be 4e^(2x). We can then take the derivative of the result again using the product rule to arrive at the result, 8e^(2x).

PA
Answered by Patrick A. Maths tutor

20182 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


How do you solve a Differential equation using integrating factors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning