Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).

The first step in scoring full marks on this typically 4 mark question is to recognise what it's asking you to do. We use the process of differentiation to solve it. f(x)=2x^3 - 2x^2 + 8xf'(x) = 6x^2 - 4x + 8 as we multiply coefficients by the corresponding power of x and then reduce the power by 1. This also leaves the final term as a constant term without an x. The general rule we use is f'(x) = (na)x^(n-1) where our original equation has the form f(x) = ax^n.Using a similar method for f"(x) where the question asks us to differentiate again to find the second derivative, we find f"(x) = 12x - 4.

Answered by Maths tutor

3649 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate 2^x?


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


What is the difference between definite and indefinite integrals?


Differentiate x^2 + y^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning