Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).

The first step in scoring full marks on this typically 4 mark question is to recognise what it's asking you to do. We use the process of differentiation to solve it. f(x)=2x^3 - 2x^2 + 8xf'(x) = 6x^2 - 4x + 8 as we multiply coefficients by the corresponding power of x and then reduce the power by 1. This also leaves the final term as a constant term without an x. The general rule we use is f'(x) = (na)x^(n-1) where our original equation has the form f(x) = ax^n.Using a similar method for f"(x) where the question asks us to differentiate again to find the second derivative, we find f"(x) = 12x - 4.

Answered by Maths tutor

3872 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

what does 'differentiation' mean?


complete the square of x^2 + 2x - 6


Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


Express 9^3x + 1 in the form3^y ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning