x^2 = 4(x – 3)^2

This is a quadratic equation, which contains terms up to x2. All quadratic equations can be written in the form ax2 + bx + c = 0 where a, b and c are numbers, and a cannot be equal to zero. Expand the brackets: x2 = 4(x2 - 6x + 9). Multiply RHS brackets by 4: x2 = 4x2 - 24x + 36. Collect x's on one side: 3x2 - 24x + 36 = 0. Simplify: x2 - 8x + 12 = 0. Factorise: (x - 6)(x - 2) = 0. The product of x - 6 and x - 2 is 0, so one or both brackets must also be equal to 0, hence x = 6 or x = 2. Alternatively you can use the quadratic formula provided in the formula sheet and substitute the corresponding numbers in, or solve by completing the square.

JW
Answered by Jennifer W. Maths tutor

3722 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What does Pythagoras's theorem state?


Solve the simultaneous equations 5x + 2y = 4 and x - y - 5 =0


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Work out the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning