Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ

Step 1:

We begin solving this problem by finding the gradient of the tangent line at H, which is equal to dy/dx.

In this case, our curve has equations  x = 3sinθ and y= 5cosθ.

Now, we differentiate x and y with respect to θ

dx/dθ = 3cosθ 

dy/dθ = -5sinθ

Using the chain rule we get

dy/dx = dy/dθ * dθ/dx

dy/dx = -5sinθ/3cosθ

Now using that at the point H, θ= π/6

dy/dx = -5sin(π/6)/3cos(π/6)

dy/dx = -5(1/2)/3(31/2/2)

dy/dx = -5/3(31/2)

Step 2:

The gradient of the normal line is equal to - 1/M, where M is the gradient of the tangent line at the point H where θ= π/6.

Hence the gradient of the normal line is 3(31/2)/5

Step 3:

Now the general formula for the equation of a line at (X,Y) is y - Y = M(x - X)

In our case we have that, θ= π/6, hence

x=3sin(π/6)= 3/2    and

y=5cos(π/6)= 5(31/2)/2

Hence the equation of the normal line is,

y - 5(31/2)/2 = 3(31/2)/5(x - 3/2 )

y - 5(31/2)/2 =3(31/2)x/5 - 9(31/2)/10

Multiplying out every term by 10, we are left with

10y - 25(31/2) =6(31/2)x - 9(31/2)

10y=6(31/2)x + 16(31/2)

5y=3(31/2)x + 8(31/2)

Pantelis K. A Level Maths tutor, GCSE Maths tutor, GCSE Physics tutor

1 year ago

Answered by Pantelis, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£24 /hr

Ayusha A.

Degree: BEng electrical and electronics engineering (Bachelors) - Newcastle University

Subjects offered:Maths, Physics+ 1 more

Further Mathematics

“About me: I am a final year Electrical and Electronic Engineering student at Newcastle University. I took Mathematics, Further Mathematics, Chemistry and Physics as my A-level subjects. I did peer mentoring in university and also have...”

£20 /hr

John W.

Degree: Mathematics (Masters) - St. Andrews University

Subjects offered:Maths, Further Mathematics

Further Mathematics

“I've done a broad range of maths learning and tutoring over the years, now continuing this on to university I'm sure I'll be able to help you out!”

£20 /hr

Jake H.

Degree: Computer Science (Bachelors) - Leeds University

Subjects offered:Maths, Computing


“A computer scientist with a love for reading, writing and talking about mathematics!”

About the author

Pantelis K.

Currently unavailable: for regular students

Degree: MSci Mathematics (Masters) - University College London University

Subjects offered:Maths, Physics


“About Me Hi! My name is Pantelis and I am a 4th year student at University College London, in my favorite subject which is Mathematics. Having already faced the problems of not understanding what the lecturer means, feeling shy to a...”

MyTutor guarantee

You may also like...

Posts by Pantelis

Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions

Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ

Find the roots of the quadratic equation, x^2 - 8x + 24 = 0, by completing the square.

Suppose you are given a rectangle where the length is equal to 2x+4 and its width is equal to 3x-2. Assuming that the perimeter is equal to 54 cm, what's the value of x?

Other A Level Maths questions

How do I find where the stationary points of a function are?

The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

M1: A stationary rock is dropped from a height of 30m above the ground. Calculate the time taken to reach the ground and its velocity as it hits the floor.

How do I calculate the rate of change of something for which I don't have an equation?

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss