If n is an integer prove (n+3)^(2)-n^(2) is never even.

Let us begin by simplifying the expression:(n+3)2 - n2 = (n+3)(n+3) - n2= n2 + 6n + 9 - n2 (expanded brackets)= 6n + 9 (collected like terms)= 3(2n+3) (taken out a factor of 3)Now we can consider this simpler equivalent expression.3 is an odd number2n is even thus 2n+3 is odd (even plus odd is always odd)so we have an odd*odd which is always odd, thus never even and we are done.

HK
Answered by Hugh K. Maths tutor

6898 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


Give the first and second derivative of the function f(x) = 5/x - 9x + 4


Integrate tan (x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning