A curve C has equation: x^3+2xy-x-y^3-20=0. Find dy/dx in terms of x and y.

First we need to make sure we understand implicit differentiation. As we are differentiating with respect to x, y has to be treated differently, this is because it could be anything from a constant to a function of x say f(x). Thus we don't know what its derivative with respect to x is but we do know how to represent it; as dy/dx. So to answer this question we will use the product rule along with what I have just described. For instance take the 2xy term, this will give an implicit differentiation of 2y +2x(dy/dx). Using this idea we can differentiate the original equation term by term to get 3x^2+2y+2x(dy/dx)-1-3y^2(dy/dx)=0. Isolate the (dy/dx) terms to get (2x-3y^2)(dy/dx)=1-2y-3x^2. Divide through (2x-3y^2) to get (dy/dx)=(1-2y-3x^2)/(2x-3y^2) which is the final answer.

MM
Answered by Martin M. Maths tutor

5639 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


What is exactly differentiation?


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning