Find the coordinates of the stationary point of y = x^2 + x - 2

At a stationary point, the gradient/slope of the graph is 0. To find the gradient of y, we differentiate with respect to x.This gives us dy/dx = 2x + 1. Since we want to find where the gradient is 0, we set dy/dx = 2x + 1 = 0. Solving we find that x = -1/2.We now have the x coordinate of the stationary point, we now need to find the y coordinate. We plug this value back into our original equation y = x^2 + x - 2, giving us (-1/2)^2 + (-1/2) - 2 = -9/4.Therefore, the co-ordinates of the stationary point are (-1/2, -9/4).

MC
Answered by Martin C. Maths tutor

4996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Find partial fractions of : (x+7) / ((x-3)(x+1)^2)


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Solve the equation 3^(2x+1)=1000


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning