How do you differentiate y=x^x?

To solve this problem, you need to put it into simplest form which is putting it into natural logarithm both the RHS and LHS. Then differentiate both side with respect to x as shown below.

In(y) = ln(x^x)    - natural logarithm both side

ln(y) = xln(x)      - using the power rule

(1/y)dy/dx = x*1/x + ln(x)      - Diffrentiate both side (chain rule in the RHS) 

dy/dx = y(1+ln(x))     - multiplying  'y' in both sides

         = x^x(1+ln(x))    - replacing the value of 'y'

MT
Answered by Merhawi T. Maths tutor

6084 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


If y=cos(3x)cosec(4x), find dy/dx.


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning