Work out the number of green pens in the box. (rest of Q below)

 There are only green pens and blue pens in a box. There are three more blue pens than green pens in the box. There are more than 12 pens in the box. Simon is going to take at random two pens from the box. The probability that Simon will take two pens of the same colour is 27/55. b= blue pens // g= green pens // x= total pens P(two of same colour) = P(green, green) + P(blue, blue) P(two of same colour) = (g/x)(g-1/x-1) + (b/x)(b-1/x-1)From Q: b = g + 3x = b + gx = (g + 3) + g = 2g + 3P(two of same colour) = (g/2g+3)(g-1/2g+2) + (g+3/2g+3)(g+2/2g+2) = 27/55Expanding + Solving: (g2-g)/(4g2+10g+6) + (g2+5g +6)/(4g2+10g+6) = 27/552g2+ 4g + 6 = 27/55 (4g2+10g+6) g2/55 - 5g/11 + 84/55 = 0g2 -25g +84 = 0 (g-21)(g-4) = 0 g= 21 g= 4BUT - Q states g > 12 Therefore g = 21

EH
Answered by Elinor H. Maths tutor

4624 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x + 4y = 5 , 2x - 3y = 9


Simplify, leaving your answer as a quadratic: (2x + 3)/(x+4) - (3x - 6) = 4


Make 'a' the subject of the formula: p = (3a + 5) / (4 - a)


Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences