Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])

The following function consists of the sum of two variables x^n and x^3 * sin(1/[3x]). Let's break the differentiation down term by term and differentiate xn first since it's the easier term. Recalling the sum rule of differentiation; d[xn]/dx = nx(n-1). So what we did here is some standard differentiation, where we multiply the function by the exponent, and subtract a one from its exponent. For the 2nd term; x^3 * sin(1/3x) this is a product of two functions that cannot be simplified further, and therefore we need to use the product rule to differentiate it. Recalling the derivative of the product of two functions; d(f.g)/dx = f.dg/dx + g.df/dx , where f and g are two functions of x. So, we keep one of the functions "constant" while we differentiate the other function, and vice versa for the second function, and then we sum them up to give us our final derivative. But how do we differentiate the sin(1/3x)? The derivative of sin(x) is cos(x). To differentiate sin(1/3x) we need to use the chain rule which is; df(g(x))/dx = dg/dx * df(g(x))/dx, where in our case g(x) = 1/3x and f(g(x)) is sin(1/[3x]). Therefore, by performing the operation we find that; d[sin(1/3x)]/dx = -1/(3x^2)cos(1/3x). So using the product rule we find that; d[x^3 sin(1/3x)]/dx = 3x2*sin(1/3x)-[x /3]cos(1/3x). And finally our answer to the original function is; df(x)/dx = nx(n-1)  + 3x2*sin(1/3x)-[x /3]*cos(1/3x)

VS
Answered by Valeri S. Maths tutor

3060 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.


given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


How do I find the equation of the normal to the curve y=x^2 at the point (x1,y1)? Where x1=2 and y1=4 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning