how find dy/dx of parametric equations.

We start with parametric equations of x=2t+3 and y=3t^2+3t+2.
To find dy/dx, we need to work out either (dy/dt)/(dx/dt) or (dy/dt)*(dt/dx). This makes the dt's cancel each other out, allowing us to find dy/dx. First, we will differentiate our y=3t^2+3t+2. This gives us dy/dt=6t+3. To find dx/dt, differentiate x=2t+3 to give dx/dt=2.We can then do (dy/dt)/(dx/dt) to give (6t+3)/2=3t+1.5

SW
Answered by Samuel W. Maths tutor

2987 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences