how find dy/dx of parametric equations.

We start with parametric equations of x=2t+3 and y=3t^2+3t+2.
To find dy/dx, we need to work out either (dy/dt)/(dx/dt) or (dy/dt)*(dt/dx). This makes the dt's cancel each other out, allowing us to find dy/dx. First, we will differentiate our y=3t^2+3t+2. This gives us dy/dt=6t+3. To find dx/dt, differentiate x=2t+3 to give dx/dt=2.We can then do (dy/dt)/(dx/dt) to give (6t+3)/2=3t+1.5

SW
Answered by Samuel W. Maths tutor

3302 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos^2x + cosx + sin^2x + 3 with respect to x


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning