how find dy/dx of parametric equations.

We start with parametric equations of x=2t+3 and y=3t^2+3t+2.
To find dy/dx, we need to work out either (dy/dt)/(dx/dt) or (dy/dt)*(dt/dx). This makes the dt's cancel each other out, allowing us to find dy/dx. First, we will differentiate our y=3t^2+3t+2. This gives us dy/dt=6t+3. To find dx/dt, differentiate x=2t+3 to give dx/dt=2.We can then do (dy/dt)/(dx/dt) to give (6t+3)/2=3t+1.5

SW
Answered by Samuel W. Maths tutor

2921 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


F = 5i + 3j. Find the magnitude and direction of F?


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


How to solve pully type questions in mechanics


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences