Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

SB
Answered by Stephen B. Maths tutor

5129 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


Solve the equation 7^(x+1) = 3^(x+2)


Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers


Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning