Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

SB
Answered by Stephen B. Maths tutor

5453 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning