Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.

The area of a circle is given by (pi)r2 and the area generated by R can be considered as an infinite number of circular areas.

Thus, we can write the area generated by R as the integral of (pi)(x3)between x=0 and x=4.

The (indefinate) integral is: (pi)6x5

so the area is: (pi)6(45-05)=(pi)6(1024-0)

                                      =6144(pi)

SB
Answered by Stephen B. Maths tutor

5532 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


Given that y = cos(3x)cosec(5x), use the product rule to find dy/dx.


Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.


Integrate 3 sin(x) + cos(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning