Factorise the following: 5a^3b^5-4ab^2

Step 1:-Find any common factors. Looking at this example, it becomes clear that a HCF won't be a numerical value (e.g. 4 or 5) as there are no factors which are common for both 4 and 5. Looking further, can we use the a's and b's as factors? In this case, yes we can. The highest common factor in this case therefore is ab^2.
Step 2:-Using this found highest common factor, and removing (dividing) both equations by this, what are we left with?in this case, 5a^3b^5 will go to, ab^2(5a^2b^3), and the -4ab^2 will go to, ab^2(-4)
Step 3:-Putting this all together, we are left with the answer of:
ab^2(5a^2b^3-4)

Answered by Maths tutor

3391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


Have you taught before?


Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.


Find the integral of 1/(x-5) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning