Draw a graph depicting a skydivers speed against time when jumping from a plane, until he deploys his parachute, explaining the logic of your answer through the forces applicable to the body.

Upon jumping from the plane, the diver experiences three forces; a downward force from his weight; opposed by a lift force (equal to the weight of the air he displaces); and an upward drag force = ½ . (CD.(RHO).V2.A).
Initially the largest force is the wight of the jumper, leading an increase in downward velocity due to newtons second law, however as can be seen from the drag equation, this increase in velocity will lead to a larger increase in drag force, slowing the divers acceleration, until the downward forces = the up. At this point the diver is at his terminal velocity. When he releases his parachute, there is again a massive increase in the drag force due to the larger frontal area (A), thereby decelerating the diver until he again reaches a new, reduced, terminal velocity.

BR
Answered by Bronagh R. Physics tutor

2938 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Describe the energy changes as electricity is produced in a fossil fuel station.


Resistors of 5 ohms and 10 ohms are connected in series with a battery supplying 3 volts. What is the total resistance ? And calculate the current in the circuit.


In an isolated container contains 1kg of ice at 0 oC. 1kg of warm water (323K) is poured into the container. How much ice (in kgs) remains after the system returns to thermal equilibrium? (by the end of the process?)


What is a convection current?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning