y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2

Firstly, when approaching a differentiation question you need to work out what method you need to use to solve it. As you can see there are two terms multiplied by one another (the 'x' term and the '(x-2)-1/2' term), therefore the product rule must be used. 

Making u = x and v = (x-2)-1/2

du/dx = 1 dv/dx = -1/2*(x-2)-3/2

Substituing these things into the Product Rule equation we get: 

dy/dx = -x/2*(x-2)-3/2 + (x-2)-1/2

Now we need to focus on manipulating this equation to match the one given in the question. To start with we will take out a factor of (x-2)-3/2 giving: 

dy/dx = (x-2)-3/2*(-x/2 + x-2) 

Simplyfying : 

dy/dx = (x-2)-3/2* (x/2 -2)

Multiplying by 2 : 

dy/dx = (x-4)/2*(x-2)3/2

GR
Answered by Graham R. Maths tutor

6923 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


Integrate Cos^2(x)


Differentiate 5x^2 + 11x + 5 with respect to x


Find minimum and maximum of x^2+1 if they exist


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning