Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.

To solve this problem, we must first differentiate:

Identify that we are able to use the product rule as our expression is of the form y = f(x)g(x) where f(x) = e^(2- x) and g(x) = ln(3x- 2). 

Hence f'(x) = -e^(2- x) and g'(x) = 3/(3x- 2)

By the product rule, dy/dx = f(x)g'(x) + f'(x)g(x) = 3e^(2- x)/(3x- 2) - e^(2- x)ln(3x- 2).

When we substitute x = 2 into this equation, we get that dy/dx = 3/4 - ln(4), which is our final answer.

JC
Answered by Joe C. Maths tutor

10156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


A curve (C) with equation y=3x^(0.5)-x^(1.5) cuts the X axis at point A and the origin, calculate the co-ordinates of point A.


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning