Find dy/dx of 5x^2 + 2y^3 +8 =17.

As we have to differentiate both x and y, we must use implict differentiation for the y by differentiating it with respect to x (also written as d/dx)

5x-> 10x (multiply the power by the number at the start and take away 1 from the power)

2y3 -> 6y2 . dy/dx (the dot means multiply)

8 -> 0 (a sole constant always differnetiates to 0)

17 -> 0

Therefore the equation now looks like this:

10x + 6y2 . dy/dx = 0

so 6y2 .dy/dx = -10x

so dy/dx = -10x / 6y

AP
Answered by Anish P. Maths tutor

4819 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


Given that y = x^4 + x^(1/3) + 3, find dy/dx


Integrate y=(x^2)cos(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning