x = 0.045 (45 recurring). Prove algebraically that x can be written as 1/22

x=0.045 (45 recurring)

10x = 0.45 (45 recurring)

100x = 4.54 (54 recurring)

1000x = 45.45 (45 recurring)

To get rid of the decimals:

1000x-10x = 45.45 - 0.45

990x = 45

x = 45/990

x = 9/198 (simplify by dividing by 5)

x = 1/22 (simplify by dividing 9)

JT
Answered by John T. Maths tutor

59438 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 11 counters in a bag. 8 of them red, 3 of them green. Neville takes 2 counters from the bag. Work out the probability that Neville takes one counter of each colour.


Dominik hires a satellite phone. His total hire charge is £860. For how many weeks did he hire the phone? (Total hire charge = No. of week X 90 +50)


Megan buys a car for £7,700 plus 20% VAT. She pays a deposit for the car and then pays the rest in 12 equal instalments of £642.50. How much did Megan pay as a deposit?


work out the value of 4a + 2b when a = 4 and b = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning