Differentiate a^x with respect to x

y=a^x

take natural logs (also written as ln or log base e) of both sides

lny=lna^x

by logarithms rules lna^x=xlna

lny=xlna

Now differentiate implicitly

1/y = (dx/dy)lna

Note here lna is just a constant, then rearranging we have

dy/dx = ylna

and since y=a^x

dy/dx = a^x(lna)

JM
Answered by James M. Maths tutor

42144 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


Find the gradient of the curve y = x^2(ln(x)) at x = e


ABCDEF


Integrate the natural logarithm of x (ln x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning