What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?

If you imagine that sin(x), cos(x), -sin(x) and -cos(x) are on a wheel as shown below:

      sin(x)

-cos(x)  cos(x)

     -sin(x)

then going clockwise around the wheel you have what each term differentiates to, so sin(x) to cos(x), cos(x) to -sin(x) etc, and anticlockwise you have what each term integrates to, so sin(x) to -cos(x), -cos(x) to -sin(x) etc etc. 

HE
Answered by Hannah E. Maths tutor

13980 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the factor theorem?


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences