What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?

If you imagine that sin(x), cos(x), -sin(x) and -cos(x) are on a wheel as shown below:

      sin(x)

-cos(x)  cos(x)

     -sin(x)

then going clockwise around the wheel you have what each term differentiates to, so sin(x) to cos(x), cos(x) to -sin(x) etc, and anticlockwise you have what each term integrates to, so sin(x) to -cos(x), -cos(x) to -sin(x) etc etc. 

HE
Answered by Hannah E. Maths tutor

13558 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x such that: (log3(81)+log2(32))/(log2(x)) = log2(x) (5 marks)


How do you differentiate?


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Given that cos(x) = 1/4, what is cos(2x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences