differentiate y = (4-x)^2

This is a basic example of a very important result: the chain rule. The difficulty of this sort of example is that we have a "function of a function". That is, we have the function '4-x' and then we square this. 

The general approach is as follows. First we will let 'u' be a new function: u=4-x. It is evident that now we have y=u^2 which looks like it might be easier to work with. The chain rule says the following:

dy/dx = (dy/du)*(du/dx)

In this case y=u^2 so, from normal differentiation, we get dy/du = 2u. We also then have u = 4-x. So, again from normal differentiation techniques, we have du/dx=-1.

Using the chain rule gives dy/dx = (2u)*(-1) and if we substitute u=4-x we get

dy/dx = -2(4-x)  = 2x-8    which is the final answer.                                   

BB
Answered by Ben B. Maths tutor

8194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is dy/dx when y=ln(6x)?


A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


How do I solve a simultaneous equation in two variables when they have with different coefficients?


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning