Find the integral of log|x| by integration by parts

The question says to use integration by parts on this question, but at the minute we only have one variable.

Therefore, we introduce a 1, so that log|x|= 1*log|x|, here we have not altered the value of the function, but have intoduced a variable so that integration by parts can be used.

The derivative of Log|x| is simply 1/x, so it will be the 1 that we will integrate, which is x.

We then sub these into the by parts formula of uv-∫u'v

This is therefore equal to xlog|x|-∫x/x.dx

=xlog|x|-∫1dx

=xlog|x|-x.

LP
Answered by Laura P. Maths tutor

5501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.


Given that x = ln(sec(2y)) find dy/dx


why is sin(x) squared plus cos(x) squared 1?


Given y = x^3 + 4x + 1, find the value of dy/dx when x=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning